Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 900
Filtrar
1.
Front Microbiol ; 15: 1342328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655085

RESUMO

Introduction: Our study undertakes a detailed exploration of gene expression dynamics within human lung organ tissue equivalents (OTEs) in response to Influenza A virus (IAV), Human metapneumovirus (MPV), and Parainfluenza virus type 3 (PIV3) infections. Through the analysis of RNA-Seq data from 19,671 genes, we aim to identify differentially expressed genes under various infection conditions, elucidating the complexities of virus-host interactions. Methods: We employ Generalized Linear Models (GLMs) with Quasi-Likelihood (QL) F-tests (GLMQL) and introduce the novel Magnitude-Altitude Score (MAS) and Relaxed Magnitude-Altitude Score (RMAS) algorithms to navigate the intricate landscape of RNA-Seq data. This approach facilitates the precise identification of potential biomarkers, highlighting the host's reliance on innate immune mechanisms. Our comprehensive methodological framework includes RNA extraction, library preparation, sequencing, and Gene Ontology (GO) enrichment analysis to interpret the biological significance of our findings. Results: The differential expression analysis unveils significant changes in gene expression triggered by IAV, MPV, and PIV3 infections. The MAS and RMAS algorithms enable focused identification of biomarkers, revealing a consistent activation of interferon-stimulated genes (e.g., IFIT1, IFIT2, IFIT3, OAS1) across all viruses. Our GO analysis provides deep insights into the host's defense mechanisms and viral strategies exploiting host cellular functions. Notably, changes in cellular structures, such as cilium assembly and mitochondrial ribosome assembly, indicate a strategic shift in cellular priorities. The precision of our methodology is validated by a 92% mean accuracy in classifying respiratory virus infections using multinomial logistic regression, demonstrating the superior efficacy of our approach over traditional methods. Discussion: This study highlights the intricate interplay between viral infections and host gene expression, underscoring the need for targeted therapeutic interventions. The stability and reliability of the MAS/RMAS ranking method, even under stringent statistical corrections, and the critical importance of adequate sample size for biomarker reliability are significant findings. Our comprehensive analysis not only advances our understanding of the host's response to viral infections but also sets a new benchmark for the identification of biomarkers, paving the way for the development of effective diagnostic and therapeutic strategies.

2.
J Urol ; : 101097JU0000000000003911, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661049
3.
J Urol ; : 101097JU0000000000003893, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488107
4.
J Urol ; 211(5): 725-727, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323549
5.
Trends Biotechnol ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38369434

RESUMO

Urine-derived stem cells (USCs) are a promising source of stem cells for cell therapy, renal toxicity drug testing, and renal disease biomarker discovery. Patients' own USCs can be used for precision medicine. In this review we first describe the isolation and characterization of USCs. We then discuss preclinical studies investigating the use of USCs in cell therapy, exploring the utility of USCs and USC-derived induced pluripotent stem cells (u-iPSCs) in drug toxicity testing, and investigating the use of USCs as biomarkers for renal disease diagnosis. Finally, we discuss the challenges of using USCs in these applications and provide insights into future research directions. USCs are a promising tool for advancing renal therapy, drug testing, and biomarker discovery. Further research is needed to explore their potential.

6.
Bioact Mater ; 34: 1-16, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38173844

RESUMO

Marrow niches in osteosarcoma (OS) are a specialized microenvironment that is essential for the maintenance and regulation of OS cells. However, existing animal xenograft models are plagued by variability, complexity, and high cost. Herein, we used a decellularized osteosarcoma extracellular matrix (dOsEM) loaded with extracellular vesicles from human bone marrow-derived stem cells (hBMSC-EVs) and OS cells as a bioink to construct a micro-osteosarcoma (micro-OS) through 3D printing. The micro-OS was further combined with a microfluidic system to develop into an OS-on-a-chip (OOC) with a built-in recirculating perfusion system. The OOC system successfully integrated bone marrow niches, cell‒cell and cell-matrix crosstalk, and circulation, allowing a more accurate representation of OS characteristics in vivo. Moreover, the OOC system may serve as a valuable research platform for studying OS biological mechanisms compared with traditional xenograft models and is expected to enable precise and rapid evaluation and consequently more effective and comprehensive treatments for OS.

7.
Sci Rep ; 14(1): 276, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168584

RESUMO

Sickle cell disease (SCD) affects millions worldwide, yet there are few therapeutic options. To develop effective treatments, preclinical models that recapitulate human physiology and SCD pathophysiology are needed. SCD arises from a single Glu-to-Val substitution at position 6 in the ß subunit of hemoglobin (Hb), promoting Hb polymerization and subsequent disease. Sheep share important physiological and developmental characteristics with humans, including the same developmental pattern of fetal to adult Hb switching. Herein, we investigated whether introducing the SCD mutation into the sheep ß-globin locus would recapitulate SCD's complex pathophysiology by generating high quality SWISS-MODEL sheep Hb structures and performing MD simulations of normal/sickle human (huHbA/huHbS) and sheep (shHbB/shHbS) Hb, establishing how accurately shHbS mimics huHbS behavior. shHbS, like huHbS, remained stable with low RMSD, while huHbA and shHbB had higher and fluctuating RMSD. shHbB and shHbS also behaved identically to huHbA and huHbS with respect to ß2-Glu6 and ß1-Asp73 (ß1-Asn72 in sheep) solvent interactions. These data demonstrate that introducing the single SCD-causing Glu-to-Val substitution into sheep ß-globin causes alterations consistent with the Hb polymerization that drives RBC sickling, supporting the development of a SCD sheep model to pave the way for alternative cures for this debilitating, globally impactful disease.


Assuntos
Anemia Falciforme , Hemoglobinas , Adulto , Humanos , Animais , Ovinos , Hemoglobinas/genética , Anemia Falciforme/terapia , Hemoglobina A , Globinas beta/genética , Modelos Animais , Hemoglobina Falciforme/genética , Hemoglobina Falciforme/química
8.
J Urol ; 211(4): 635-636, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38230645
9.
Adv Healthc Mater ; 13(4): e2302508, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37906084

RESUMO

Medical imaging and 3D bioprinting can be used to create patient-specific bone scaffolds with complex shapes and controlled inner architectures. This study investigated the effectiveness of a biomimetic approach to scaffold design by employing geometric control. The biomimetic scaffold with a dense external layer showed improved bone regeneration compared to the control scaffold. New bone filled the defected region in the biomimetic scaffolds, while the control scaffolds only presented new bone at the boundary. Histological examination also shows effective bone regeneration in the biomimetic scaffolds, while fibrotic tissue ingrowth is observed in the control scaffolds. These findings suggest that the biomimetic bone scaffold, designed to minimize competition for fibrotic tissue formation in the bony defect, can enhance bone regeneration. This study underscores the notion that patient-specific anatomy can be accurately translated into a 3D bioprinting strategy through medical imaging, leading to the fabrication of constructs with significant clinical relevance.


Assuntos
Bioimpressão , Procedimentos de Cirurgia Plástica , Humanos , Tecidos Suporte , Osso e Ossos , Engenharia Tecidual/métodos , Impressão Tridimensional
10.
J Urol ; 211(2): 330-331, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37965987
11.
Tissue Eng Part A ; 30(1-2): 5-13, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37950711

RESUMO

From a literary perspective, the concept of tissue engineering and regenerative medicine dates back several thousand years. However, from a scientific aspect, the current state of the field owns its initial origin to the discovery of cell culture methods and the ability to maintain cells outside the body in the early 1900s, to later discoveries surrounding stem cells. The science of biomaterials evolved more recently, from the use of degradable natural biomaterials in the 1970's to artificial biomaterials in the 1980s, and bioprinting hydrogels this century. Tissue engineering, originally involving the combination of cells and biomaterials, owes its roots to the early attempts in the 1960s to create artificial skin grafts as temporary wound covers for burn patients. Much has transpired since, with an increasing number of technologies reaching patients. Academia, industry, government agencies, societies, and nonprofit organizations have all played a role in advancing the field to where it is today. This overview, presented at the Rice Short Course on Advances in Tissue Engineering, highlights some of the historical aspects, as well as past and future challenges and opportunities. At the current pace of discovery, the field is poised to continue its exponential growth.


Assuntos
Pele Artificial , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Medicina Regenerativa/métodos , Materiais Biocompatíveis , Células-Tronco , Impressão Tridimensional
12.
J Urol ; 211(3): 492-493, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088339
13.
J Urol ; 211(1): 194-195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37861082
14.
F S Sci ; 5(1): 58-68, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145868

RESUMO

OBJECTIVE: To assess the in vivo biomechanical maturation of tissue-engineered neo-uteri that have previously supported live births in a rabbit model. DESIGN: Nonclinical animal study. SETTING: University-based research laboratory. ANIMALS: Eighteen adult female rabbits. INTERVENTION: Biodegradable poly-DL-lactide-co-glycolide-coated polyglycolic acid scaffolds seeded with autologous uterine-derived endometrial and myometrial cells. Nonseeded scaffolds and seeded, tissue-engineered neo-uteri were implanted into one uterine horn of rabbits for 1, 3, or 6 months, excised, and biomechanically assessed in comparison to native uterine tissue. MAIN OUTCOME MEASURES: Tensile stress-relaxation testing, strain-to-failure testing, and viscoelastic modeling. RESULTS: By evaluating the biomechanical data with several viscoelastic models, it was revealed that tissue-engineered uteri were more mechanically robust than nonseeded scaffolds. For example, the 10% instantaneous stress of the tissue-engineered neo-uteri was 2.1 times higher than the nonseeded scaffolds at the 1-month time point, 1.6 times higher at the 3-month time point, and 1.5 times higher at the 6-month time point. Additionally, as the duration of implantation increased, the engineered constructs became more mechanically robust (e.g., 10% instantaneous stress of the tissue-engineered neo-uteri increased from 22 kPa at 1 month to 42 kPa at 6 months). Compared with native tissue values, tissue-engineered neo-uteri achieved or surpassed native tissue values by the 6-month time point. CONCLUSION: The present study evaluated the mechanical characteristics of novel tissue-engineered neo-uteri that have previously been reported to support live births in the rabbit model. We demonstrate that the biomechanics of these implants closely resemble those of native tissue, giving further credence to their development as a clinical solution to uterine factor infertility.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Humanos , Gravidez , Animais , Feminino , Coelhos , Ácido Poliglicólico , Nascido Vivo , Útero/cirurgia
15.
Tissue Eng Part A ; 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38126301

RESUMO

Tissues on a chip are sophisticated three-dimensional (3D) in vitro microphysiological systems designed to replicate human tissue conditions within dynamic physicochemical environments. However, the current fabrication methods for tissue spheroids on a chip require multiple parts and manual processing steps, including the deposition of spheroids onto prefabricated "chips." These challenges also lead to limitations regarding scalability and reproducibility. To overcome these challenges, we employed 3D printing techniques to automate the fabrication process of tissue spheroids on a chip. This allowed the simultaneous high-throughput printing of human liver spheroids and their surrounding polymeric flow chamber "chips" containing inner channels in a single step. The fabricated liver tissue spheroids on a liver-on-a-chip (LOC) were subsequently subjected to dynamic culturing by a peristaltic pump, enabling assessment of cell viability and metabolic activities. The 3D printed liver spheroids within the printed chips demonstrated high cell viability (>80%), increased spheroid size, and consistent adenosine triphosphate (ATP) activity and albumin production for up to 14 days. Furthermore, we conducted a study on the effects of acetaminophen (APAP), a nonsteroidal anti-inflammatory drug, on the LOC. Comparative analysis revealed a substantial decline in cell viability (<40%), diminished ATP activity, and reduced spheroid size after 7 days of culture within the APAP-treated LOC group, compared to the nontreated groups. These results underscore the potential of 3D bioprinted tissue chips as an advanced in vitro model that holds promise for accurately studying in vivo biological processes, including the assessment of tissue response to administered drugs, in a high-throughput manner.

16.
Cancers (Basel) ; 15(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38136325

RESUMO

Melanoma is responsible for the majority of skin cancer-related fatalities. Immune checkpoint inhibitor (ICI) treatments have revolutionized the management of the disease by significantly increasing patient survival rates. However, a considerable number of tumors treated with these drugs fail to respond or may develop resistance over time. Tumor growth and its response to therapies are critically influenced by the tumor microenvironment (TME); it directly supports cancer cell growth and influences the behavior of surrounding immune cells, which can become tumor-permissive, thereby rendering immunotherapies ineffective. Ex vivo modeling of melanomas and their response to treatment could significantly advance our understanding and predictions of therapy outcomes. Efforts have been directed toward developing reliable models that accurately mimic melanoma in its appropriate tissue environment, including tumor organoids, bioprinted tissue constructs, and microfluidic devices. However, incorporating and modeling the melanoma TME and immune component remains a significant challenge. Here, we review recent literature regarding the generation of in vitro 3D models of normal skin and melanoma and the approaches used to incorporate the immune compartment in such models. We discuss how these constructs could be combined and used to test immunotherapies and elucidate treatment resistance mechanisms. The development of 3D in vitro melanoma models that faithfully replicate the complexity of the TME and its interaction with the immune system will provide us with the technical tools to better understand ICI resistance and increase its efficacy, thereby improving personalized melanoma therapy.

17.
Artigo em Inglês | MEDLINE | ID: mdl-37923557

RESUMO

The development of innovative vascular substitutes has become increasingly significant due to the prevalence of vascular diseases. In this study, we designed a biofunctionalized electrospun vascular scaffold by chemically conjugating heparin molecules as an antithrombotic agent with an endothelial cell (EC)-specific antibody to promote in situ endothelialization. To optimize this biofunctionalized electrospun vascular scaffolding system, we examined various parameters, including material compositions, cross-linker concentrations, and cross-linking and conjugation processes. The findings revealed that a higher degree of heparin conjugation onto the vascular scaffold resulted in improved antithrombotic properties, as confirmed by the platelet adhesion test. Additionally, the flow chamber study demonstrated that the EC-specific antibody immobilization enhanced the scaffold's EC-capturing capability compared to a nonconjugated vascular scaffold. The optimized biofunctionalized vascular scaffolds also displayed exceptional mechanical properties, such as suture retention strength and tensile properties. Our research demonstrated that the biofunctionalized vascular scaffolds and the directed immobilization of bioactive molecules could provide the necessary elements for successful acellular vascular tissue engineering applications.

18.
Mater Des ; 2332023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37854951

RESUMO

Bioinks for cell-based bioprinting face availability limitations. Furthermore, the bioink development process needs comprehensive printability assessment methods and a thorough understanding of rheological factors' influence on printing outcomes. To bridge this gap, our study aimed to investigate the relationship between rheological properties and printing outcomes. We developed a specialized bioink artifact specifically designed to improve the quantification of printability assessment. This bioink artifact adhered to established criteria from extrusion-based bioprinting approaches. Seven hydrogel-based bioinks were selected and tested using the bioink artifact and rheological measurement. Rheological analysis revealed that the high-performing bioinks exhibited notable characteristics such as high storage modulus, low tan(δ), high shear-thinning capabilities, high yield stress, and fast, near-complete recovery abilities. Although rheological data alone cannot fully explain printing outcomes, certain metrics like storage modulus and tan(δ) correlated well (R2 > 0.9) with specific printing outcomes, such as gap-spanning capability and turn accuracy. This study provides a comprehensive examination of bioink shape fidelity across a wide range of bioinks, rheological measures, and printing outcomes. The results highlight the importance of considering the holistic view of bioink's rheological properties and directly measuring printing outcomes. These findings underscore the need to enhance bioink availability and establish standardized methods for assessing printability.

19.
Urol Res Pract ; 49(1): 11-18, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37877833

RESUMO

Despite developing surgical techniques in urethral surgery, the outcome and complications are still unsatisfactory. Alternative treatment modality has been coming up, particularly in patients with longer stricture, under revision surgery, and penile stricture. Tissue engineering grafts are a promising approach for substituting urethral reconstruction. Over the decades, numerous preclinical studies have been published to show the efficacy and safety of different origins of materials, the presence of autologous cells (acellular matrices or autologous cell-seeded matrices), and the construction of engineered tissue (patch or tubularized constructs) on animal models. However, the results of these studies have not yet reached the intended level for daily clinical practice. A PubMed database search was performed for articles, using specific keywords, published between 1998 and 2022, with a selection on using tissue-engineered grafts for urethroplasty. Many materials have been used as a graft, such as acellular bladder matrix, small intestinal submucosa, acellular dermal matrix, and polyglycolic acid with or without cells, and were evaluated according to the functional and anatomical outcomes comprising complications. According to current literature, tubularized scaffolds constructed from co-cultured cells have promising results for the future. However, high-quality evidence through randomized controlled studies with larger sample sizes, with a long-term follow-up is required to determine accurate outcomes.

20.
Inflamm Regen ; 43(1): 47, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798761

RESUMO

BACKGROUND: Extracellular vesicles derived from mesenchymal stem/stromal cells (MSCs) have shown therapeutic effects on liver fibrosis. This study aimed to evaluate the effects of extracellular vesicles from placenta-derived MSCs (Pd-MSCs-EVs) on liver fibrosis at 3D/2D levels and explore the potential mechanisms. METHODS: The multicellular liver organoids, consisting of hepatocytes, hepatic stellate cells (HSCs), Kupffer cells, and liver sinusoidal endothelial cells, were observed for growth status, morphological changes, and metabolism. Human transformation growth factor- beta 1 (TGF-ß1) was used to induce fibrosis at optimal concentration. The anti-fibrosis effects of Pd-MSCs-EVs were evaluated in liver organoids and HSCs models. Anti-fibrotic content of Pd-MSCs-EVs was identified by multiple experimental validations. RESULTS: TGF-ß1 induced fibrosis in liver organoids, while Pd-MSCs-EVs significantly alleviated fibrotic phenotypes. Following serial verifications, miR-378c was identified as a potential key anti-fibrosis content. In contrast, miR-378c depletion decreased the anti-fibrotic effects of Pd-MSCs-EVs. Additionally, Pd-MSCs-EVs administration repressed TGF-ß1-mediated HSCs activation at 2D or 3D levels. Mechanistically, exosomal miR-378c inactivated HSCs by inhibiting epithelial-mesenchymal transition (EMT) through stabilizing E-cadherin via targeting its E3 ubiquitin ligase S-Phase Kinase Associated Protein 2 (SKP2). CONCLUSION: Pd-MSCs-EVs ameliorated TGF-ß1-induced fibrosis by deactivating HSCs in a miR-378c/SKP2-dependent manner, which may be an efficient therapeutic candidate for liver fibrosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...